Decathlon Performance
Classical approach: maximum likelihood estimation
Use \(\boldsymbol{\hat \alpha}, \boldsymbol{\hat \beta},\) and \(\boldsymbol{\hat \gamma}\) to make predictions
Problem: how to propagate estimation uncertainty to predictions?
Quantify all uncertainties using probability distributions
Update, combine, and propagate uncertainty using probability calculus
General workflow: data \(Y\) and unknown parameter \(\theta\)
Posterior quantifies uncertainty given the observed data
n_sims <- 5e5
theta1_draws <- rbeta(n = 5e5, shape1 = a1_post, shape2 = b1_post)
ystar1 <- rbinom(n = 5e5, size = 4, prob = theta1_draws)
round(table(ystar1)/n_sims, digits = 2)ystar1
0 1 2 3 4
0.02 0.13 0.30 0.36 0.19
ystar2
0 1 2 3 4
0.00 0.03 0.13 0.37 0.48
For each posterior sample \(\boldsymbol{\alpha}^{(m)}, \boldsymbol{\beta}^{(m)}, \boldsymbol{\gamma}^{(m)}, \boldsymbol{\sigma}^{(m)}\): \[ \begin{align} y^{\star(m)}_{e,i,j} &= \alpha^{(m)}_{e,i} + \sum_{d = 1}^{D}{\gamma^{(m)}_{e,d}\phi_{d}(\text{age}_{i,j})} \\ ~& + \beta^{(m)}_{e,1}Y_{1,i,j} + \beta^{(m)}_{e,2}Y_{2,i,j} + \cdots + \beta^{(m)}_{e,e-1}Y_{e-1,i,j} + \sigma^{(m)}\epsilon^{\star (m)}_{e,i,j}, \end{align} \] where \(\epsilon^{\star(m)} \sim N(0,1)\)
\(y^{\star (1)}_{e,i,j}, \ldots, y^{\star (M)}_{e,i,j}\): sample from posterior of \(Y_{e,i,j}\) given all data.